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1.	Introduction	
Traffic flow theory broadly includes macroscopic hydrodynamic models and microscopic 

car following modes. The state of the art of traffic flow theory leaves much to be desired, there 
are many common phenomena that have yet to be fully understood. While important advances 
continue to be made, most recent empirical developments rely on labor intensive data reduction; 
thus, limiting the scope of many studies while focusing attention on the few microscopic data 
sets available. Obviously this slow pace of discovery is of concern within the traffic flow theory 
community, but the impacts are felt beyond the theoretical domain. Traffic flow models are 
critical to many aspects of surface transportation, e.g., transportation planning, network design, 
vehicle routing, traffic management, traffic control, and traveler information all depend on 
models and simulation software that are based upon traffic flow theory. Unfortunately many of 
the state of the practice products require an intensive calibration. As a result, the commercial 
tools are often left at the default settings, thereby degrading the performance of the various 
applications that depend on traffic flow theory.  

At the heart of the problem is a lack of the right data. Since 1980 most empirical traffic 
flow theory developments have been based on macroscopic data (e.g., 30 sec average speed, 
flow, and occupancy) collected from conventional vehicle detectors that were deployed for real 
time traffic control. These data greatly expanded the amount of empirical data compared to the 
earlier labor-intensive data collection efforts. The coarse macroscopic data aggregation made 
sense in an era where computing power was expensive; however, in the present day the 
granularity of conventional macroscopic detector data unnecessarily obscures the underlying 
processes and has lead to several misconceptions. In short, our understanding of traffic flow has 
come to a point where these coarsely aggregated data are now limiting our insight into critical 
behavior both at the macroscopic and microscopic scales.  

As reviewed in Section 1.1, much of traffic flow theory depends a fundamental 
relationship (FR) between flow, density, and space mean speed; either explicitly, e.g., 
hydrodynamic models such as LWR (Lighthill and Whitham, 1955, and Richards, 1956) or 
implicitly, e.g., car following models (Chandler et al., 1958; Gazis et al., 1961). While 
conventional theory has proven to be a good first-order approximation, there are numerous 
unreasonable assumptions that are often employed (e.g., "near stationary traffic" and 
"homogeneous vehicles") that limit the applicability of many theories. Most conventional FR 
curves are fit to a cloud of the coarsely aggregated data and as a result, the fit is poor, requiring 
prior assumptions of the curve shape before fitting. Typically, many other curve shapes could 
easily fit the point cloud just as well if the assumptions were changed (see, e.g., Drake et al., 
1967 for an early work that remains typical of contemporary, conventional efforts). The scattered 
cloud of empirical data points has commonly been accepted as unavoidable; yet Coifman 
(2014a) found evidence that much of the scatter could be attributed to large, underappreciated 
sampling errors arising from the conventional, fixed time aggregation process. 

In response to these challenges, Coifman (2014b) developed a new data-driven approach 
for aggregating the individual vehicle measurements from dual loop detectors that leads to a very 
clean FR derived from empirical data. The start of Section 2 summarizes the details of this new 
method. For now it is sufficient to note that the approach accommodates inhomogeneous 
vehicles, does not require "near stationary" traffic, and it does not require any preconceived 
curve to be fit to the data. Coifman (2014b) only contemplated flow-occupancy relationships. As 
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discussed in the latter portion of Section 2, the current work extends the methodology to 
macroscopic flow-density and microscopic speed-spacing relationships derived entirely from 
empirical loop detector data, yielding relationships that have historically been difficult to 
measure. The key distinction of this advance is how vehicle length is accounted for. 

Section 3 then applies the new methodology to three large data sets. The advances 
provide a new level of accuracy to calibrate macroscopic hydrodynamic models and microscopic 
car following models using commonly deployed dual loop detectors. These advances in turn 
should advance traffic flow theory. A key finding of this work is the fact that many of the critical 
parameters (e.g., the slope of the congested regime) turn out to depend on vehicle length. These 
relationships are obscured in conventionally aggregated data because vehicles of different 
lengths are arbitrarily grouped together based on arrival order. Then the report closes in Section 
4 with a discussion and conclusions. 

1.1.	Motivation-	Conventional	Traffic	Flow	Theory	
As noted above, much of traffic flow theory depends a fundamental relationship (FR) 

between flow, q, density, k, and space mean speed, v, either explicitly (e.g., hydrodynamic 
models) or implicitly (e.g., car following models). All of the empirically generated FR's use data 
that average conditions over time and/or space to calculate the traffic state, (q, k, v). Fig. 1A 
shows a hypothetical example of an ideal triangular flow-density FR curve (denoted qkFR), it is 
uniquely defined by any three of the four parameters: roadway capacity, qo, free speed, vf, jam 
density, kj, and the slope of the congested regime, w. Given a triangular qkFR like this, following 
LWR, w corresponds to the velocity at which disturbances travel within a queue. While debate 
continues about the correct shape of the qkFR (see Coifman and Kim, 2011 for details), most 
researchers agree that it should either be triangular (e.g., Hall et al, 1986; Newell, 1993) or 
parabolic (e.g., Greenshields, 1935; Highway Capacity Manual, TRB, 2000). In any event, the 
current work makes no a priori assumptions about the shape of the FR. Resolving the debate is 
complicated by the fact that it is difficult to measure k directly. Although k remains a dominant 
variable in many traffic flow theories, most empirical FR studies use occupancy, occ, as a proxy 
for k, where: occ is the percentage of the sampling period, T, that vehicles occupy a vehicle 
detector. As shown in Equation 1, with a homogeneous vehicle fleet occ is proportional to k by 
the average effective vehicle length, Leff during T; where a given vehicle's effective length is the 
sum of its physical length and the size of the detection zone. Of course in reality Leff varies from 
sample to sample, so in an effort to avoid the dependence on Leff, many researchers prefer to 
calculate k from measured v and q via the fundamental equation (Equation 2). Unfortunately 
Equation 2 only masks the dependency on Leff: Fig. 1A shows clearly that the qkFR underlying 
Equation 2 depends on kj and w, while the results in Section 3 will show that these two 
parameters both depend on Leff.  

𝑜𝑐𝑐 = 𝑘 ∗ 𝐿'(( (1) 

𝑞 = 𝑘 ∗ 𝑣 (2) 
To date there has been no good way to measure k directly using conventional loop 

detectors for empirical traffic flow theory development. There are a few exceptions that fit niche 
applications. For example, Edie's generalized definitions of q, k, and v ensure that Equation 2 
always holds, without any requirement of stationarity (Edie, 1965). Cassidy and Coifman (1997) 
used this method to find k over the short distance spanned by the paired loops in a dual loop 
detector. There are other techniques to estimate density over a link between two detector stations, 
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e.g., Coifman (2003). However, these methods do nothing to address the granularity problems 
mentioned previously. They average across changing traffic states and cannot fully address the 
impacts of Leff, thus limiting their impact to advance traffic flow theory. 

1.1.1.	Troubles	with	the	Conventional	Theory	
There are several problems with the data forming the empirical foundations of traffic 

flow theory. First, Fig. 1B shows a typical example of conventionally measured q versus occ 
sampled at T=30 s from an actual dual loop detector over a day. The point cloud shows 
considerable scatter, which is commonly attributed to combining several non-stationary traffic 
states in a given sample, e.g., Cassidy (1998). It is hard to imagine any single curve that would 
be representative of all of the observed data points. Yet many traffic flow theories are contingent 
upon the existence of some well-defined FR curve through these data (or the corresponding 
qkFR curve) and often the dependence includes higher order derivatives of the curve. 

Second, unfortunately most empirical FR studies do not contemplate the impacts of 
inhomogeneous vehicles, or if they do, it is typically only to the depth of passenger car 
equivalents (PCE). PCE is a scale factor to account for long vehicles. However, as shown in 
Coifman (2014a), PCE is far too simplistic to address the impacts of different values of Leff and 
the results presented in Section 3 show conclusively that trucks really do behave differently than 
cars. Some studies have tried to avoid this issue with one of the best examples being Persaud and 
Hurdle (1988). They explicitly used a lane with a truck restriction to avoid, "the complication of 
determining and applying passenger car equivalency conversions." However, one needs to 
include trucks and other long vehicles in a comprehensive traffic flow theory. More recently a 
few studies have explicitly contemplated multiple vehicle types, e.g., Punzo and Tripodi (2007) 
and Yang et al. (2013) developed multiclass models and then empirically calibrated them with 
two classes of vehicles: cars and trucks. While these multiclass models specifically address 
inhomogeneous vehicle fleets, they do not encompass all of the issues addressed in the current 
work, such as relaxing the need for stationary conditions and relaxing the need for prior 
assumptions about the shape of the FR. 

Third, most empirical FR studies use traffic state measurements from conventional 
detectors that average vehicle measurements over fixed time sampling periods. Coifman (2014a) 
goes in to detail as to how and why conventional fixed time sampling is a crude methodology. 
That work used hypothetical microscopic models to revisit the process of generating empirical 
FR and uncovered several commonly underappreciated factors that result in surprisingly large, 
non-linear distortions of empirical traffic state measurements.  

1.1.2.	Car	Following	Models	
While macroscopic traffic flow models seek to capture the aggregate behavior, another 

body of traffic flow theory approaches the problem from microscopic car following models to 
capture the individual driver behavior. Most of these models have evolved from the early work 
by GM, e.g., Chandler et al. (1958) and Gazis et al. (1961). These models typically assume a 
relationship between speed and spacing (VXp), e.g., Fig. 1C. In this case the VXp curve is 
uniquely defined by the distance, d, a driver will take at v=0; their response time, τ; and 
preferred free speed, vf. Typically there is a direct relationship between VXp and qkFR curves, 
where the latter uses the average speed across drivers, k is the reciprocal of average spacing, and 
q is calculated via Equation 2. Like macroscopic traffic flow theory, there are many overly 
simplistic assumptions in car following models. One of the biggest problems with car following 
models is the lack of large quantities of in situ data for development and calibration. The 
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development side has been partially alleviated by the Next Generation Simulation (NGSIM) data 
sets, consisting of empirical vehicle trajectory data to support the development of better traffic 
simulation (Kovvali et al., 2007); however, NGSIM has numerous problems- there are only four 
data sets, consisting of a few thousand vehicles, short duration (under an hour per set), short 
distance (roughly 1/3 mile per set), and the extracted data are riddled with errors (see, e.g., Duret 
et al., 2008; Hamdar and Mahmassani, 2008; Montanino and Punzo, 2013; Punzo et al. 2011, 
Thiemann et al., 2008). Needless to say, there remains a need for more data and in particular a 
viable means to actually collect calibration data from a corridor under study. 

2.	Methodology	
As noted in Section 1.1.1, current traffic flow theories are encumbered with poor quality 

empirical data due to conventional averaging over fixed time periods, e.g., as evident by the 
scatter in Fig. 1B. Many of the problems arise from:  

(1) a small number of vehicles per sample, especially during periods of low flow,  
(2) non-integer number of vehicle headways per sample,  
(3) a large range of vehicle lengths in a given sample due to an inhomogeneous vehicle 

fleet,  
(4) the need to seek out stationary conditions in congestion, and  
(5) the need for prior assumptions of the FR shape before fitting a curve to the point 

cloud.  
To address these problems, Coifman (2014b) developed the single vehicle passage (svp) 

method, summarized as follows. In the svp methodology vehicles are no longer taken 
successively in the order in which they arrived and there is no requirement to seek out stationary 
traffic conditions; rather, for each and every individual vehicle passage the traffic state is 
measured over the headway, h (thus, by definition, avoiding the partial headways) and the 
vehicles are grouped by similar lengths (thus, avoiding the inhomogeneous fleet) and then 
grouped by speed before aggregation. Flow for each individual svp is calculated via Equation 3. 
The associated detector on_time is measured and is used in conjunction with h to calculate occsvp 
via Equation 4 (note that h is measured rear bumper to rear bumper to ensure that the gap ahead 
of a vehicle is associated with its on_time). The corresponding vsvp and Lsvp are then calculated 
via Equations 5-6 following conventional methods. 

𝑞+,- =
.
/
 (3) 

𝑜𝑐𝑐+,- =
01_345'

/
∗ 100% (4) 

𝑣+,- =
9'3':30;_+-<:41=
3;<,';+<>_345'

 (5) 

𝐿+,- = 𝑣+,- ∗ 𝑜𝑛_𝑡𝑖𝑚𝑒 (6) 

The vehicles are sorted into Lsvp bins that only span 5 or 10 ft. The vehicles in each length 
bin are then treated separately from the other length bins. Within a given length bin the vehicles 
are further sorted into vsvp bins that only span 1 mph. To be clear, the sampling process measures 
each and every passing vehicle, regardless of its behavior and without regard for the presence or 
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absence of stationary traffic conditions (e.g., the bins combine accelerating and decelerating 
vehicles together). The result is a homogeneous set of vehicles and speeds in each bin. To ensure 
the largest possible number of similar vehicles per sample, the median qsvp and median occsvp are 
found for each combined length and speed bin. Only bins containing at least 100 observations are 
retained, thus, ensuring a large sample size in every bin. Since fewer vehicles pass per unit time 
during congested periods and most vehicles are passenger cars, to achieve sufficient sample size 
for long vehicles during congestion it is necessary for the current study to combine data over 
many days before calculating the median qsvp and median occsvp for each bin. 

Unlike most conventional traffic state measurements that use the mean to find the center 
of the distribution, the median is far less sensitive to noisy sample data, e.g., outliers from 
uncommon driver behavior and/or detector errors. The points in Fig. 2A show a typical 
empirically measured flow-occupancy FR (denoted qoccFR) arising from the svp method for 
seven different length bins (ranging in increasing lengths from the top curve, 18-22 ft vehicles, to 
the bottom curve, 68-78 ft vehicles). Each data point on each curve represents the median from 
hundreds to thousands of singe vehicle observations, and the observations underlying any one 
point on a qoccFR curve are independent of all of the other points on the given curve. Since there 
is no smoothing across the different bins, the resulting curves do not depend on any prior 
assumptions of shape. 

The published work in Coifman (2014b) only used measures that are directly available 
from dual loop detectors: speed, flow, occupancy, and vehicle length. The svp method sorts 
vehicles by length at the start, so the final curves arise from homogeneous vehicles.  

The present study extends the svp methodology to density and spacing, Xp, as follows. 
The small range of vehicle lengths in a given qoccFR curve from the svp method gives rise to 
special properties. In particular, the homogeneous length range in each svp length bin means that 
Leff ≈ median(Lsvp) for the small range of lengths in a given bin; thus, allowing for direct 
application of Equations 1-2 to derive k. As noted in Section 1.1 this conversion is something 
that cannot be done (correctly) with conventional fixed time measurements. By extension this 
work calculates the average spacing for each bin from the reciprocal of k, yielding a microscopic 
speed-spacing curve (denoted VXp) similar to Fig. 1C.  

It is in the context of VXp that one can understand how the svp method works for 
congested traffic. Fig. 3 shows hypothetical VXp curves for 3 different vehicles, giving rise to 
the following three distinct regions: strictly car following (sCF) corresponding to congested 
traffic, unimpeded free flow (uiFF) conditions, and mixed conditions where some drivers are car 
following and some are unimpeded.1 In the sCF region, taking the median across v for a large 
number of vehicles with the same L will yield the central tendency of the speed and length bin (it 
does not matter if one starts with occ and calculates spacing, or the reverse). Sorting vehicles by 
L in this fashion will isolate any impacts of the physical vehicle length to the respective length 
bin. For a given length bin, taking the median spacing (or k or q or occ) by speed bin only makes 
sense where the curve is expected to fall in a small range of spacing, i.e., in the sCF region.2 On 
the other hand, it should also be clear that taking the median by speed bin like this will lead to 

                                                
1 For simplicity this example VXp corresponds an underlying triangular qkFR. For the regions of interest, sCF and to a lesser 
degree uiFF, the key relationships necessary for this work also apply to the VXp corresponding to an underlying parabolic qkFR. 
2 Given the fact that the qkFR emerges from the underlying driver behavior, the VXp form of the FR must make physical sense 
for any traffic model. Of course the various forms of the FR only capture the central tendency, omitting within-driver and across-
driver variability. When considering the further impacts of driver variability, it is important to note that the scatter in the VXp 
plane is expected to be asymmetric at a given v, with longer tails to larger spacing since it remains safe to drive with an 
excessively large spacing while impossible to drive with an excessively small spacing. 
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poor performance in uiFF and mixed traffic since some or all of the drivers have achieved their 
desired vf and choose a large spacing that is generally accepted to be independent of speed. In 
other words, the svp method derived above should only work well within the sCF region, which 
is still beneficial since this congested regime has traditionally been the most difficult conditions 
to study empirically. Further motivation for the svp method can be found in the appendix of this 
report. Meanwhile, the next section goes into more details of the svp processing and 
demonstrates the results in qkFR and VXp. 

3.	Development	and	Application	
Before getting into the analysis, Section 3.1 discusses the data used in this work. Then 

Section 3.2 applies the methodology to the data sets. Section 3.3 fits curves to the data and 
estimates the underlying parameters, in the process, the analysis reveals that the qkFR and VXp 
curves change shape, depending on the given Leff of the underlying vehicles. 

3.1.	Data	Sets	
This research uses three independent data sets, all of which were collected from I-80 in 

the Berkeley Highway Laboratory, BHL, just north of Oakland, California, USA (Coifman et al. 
2000). The primary data set comes from I-80 and consists of 31 days of single vehicle passage 
data from the eastbound dual loop detector stations 1, 4, 5, 6, and 7.3 These data were collected 
between Mar 30 and April 29, 2000. After excluding detector errors using the method presented 
in Coifman (2014b) this work combines all of the svp data over the entire 31 day period from 
lanes 2-5, i.e., the four general-purpose lanes, across all five stations. Lane 1 on the median was 
excluded because it has a time-of-day HOV restriction and exhibits behavior markedly different 
from the other lanes. For brevity, this data set will be referred to as 2000 eb. The resulting data 
set includes over 12 Million svp measurements, with the Lsvp frequency distribution shown in the 
top of Table 1. 

The second data set was previously used in Coifman (2014b).4 It includes all of the svp 
data from the westbound loop detectors at BHL station 6 over 18 days in December, 1997. For 
brevity, this data set will be referred to as 1997 wb. The resulting data set includes over 1.2 
Million svp measurements, with the Lsvp frequency distribution shown in Table 1. The third data 
set comes from the video-based vehicle trajectories in the NGSIM I-80 data set. It is used to 
verify that the results do not reflect some unanticipated artifact of loop detector operation or the 
subsequent application of the svp method. This NGSIM data set was collected from the 
eastbound lanes in the BHL in April 2005 and includes just over 5,600 vehicles. The NGSIM 
data set will be discussed in greater detail later, and for brevity it will be referred to as NGSIM 
eb.  

                                                
3 Stations 2 and 3 were excluded because they exhibited vehicle length distributions suggesting that the detector sensitivity was 
set lower than the other stations while stations 8 and 9 were not operational at this time. Meanwhile, as of publication, the data set 
is available at http://www.ece.osu.edu/~coifman/documents/ 
4 Further details on this data set can be found in Coifman (2014b). Note that the 1997 wb data pre-dates the HOV lane present in 
the 2000 eb data collection. Finally, as of this writing the data set is available at http://www.ece.osu.edu/~coifman/documents/ 
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3.2.	Application	
Fig. 2A shows the qoccFR from applying the svp method from Coifman (2014b) to the 

2000 eb data set.5 Since each one of the length bins comes from (roughly) homogeneous vehicle 
lengths, the current work uses Equation 1 and the corresponding Leff for the given length bin to 
convert the qoccFR data to the qkFR curves in Fig. 2B. It should be clear that the relationship 
between curves from different length bins in qkFR has noticeably changed from qoccFR, 
illustrating the differences between easily measured occ and traditionally difficult to measure k. 
By extension, this work also takes the speed and the reciprocal of k for each bin, yielding the 
microscopic speed-spacing curve (denoted VXp) for the sCF region in Fig. 2C. While there is no 
clear upper boundary of the sCF region, this work assumes that vehicles exhibiting 40 mph 
speeds on a freeway with a 65 mph speed limit should be within the sCF region. On the lower 
end, none of the curves go all the way to 0 mph because there are few observations in this speed 
range. The slower a vehicle moves, the smaller distance it covers and thus, decreases the 
likelihood that it will pass a detector while moving so slow. While there were some extremely 
low speed observations, the plots only show the results for combined speed-length bins that had 
at least 100 observations. The empirical results from the svp method in each length bin of Fig. 
2B and 2C approach the form of the ideal curves shown respectively in Fig. 1A and 1C.  

The location and dates included in the 2000 eb data set were deliberately chosen because 
the site exhibited data throughout the full range of congested speeds. One should be careful to 
note that not all locations will show a complete curve like Fig. 2A, e.g., if downstream capacity 
is constrained by a downstream bottleneck the qoccFR curve should exhibit a plateau at the 
bottleneck capacity and trace out the trapezoidal shape as predicted by Hsu and Banks (1993) 
and found in Coifman (2014b). In fact even Fig. 2C shows slight curvature above 30 mph. We 
suspect there are many factors that can cause the observed FR curve to deviate from the ideal 
form, but the pursuit of those factors is the subject of on-going research. 

To verify that these results were not unique to the 2000 eb data set, Fig. 4 repeats the 
analysis on the 1997 wb data set and finds similar results. The VXp curves in Fig. 4C shows that 
the upper end of the linear region falls around 20 mph in this data set. Throughout this figure the 
curves for the longer vehicle length bins show more scatter than Fig. 2 because the number of 
svp observations is an order of magnitude smaller than the 2000 eb data set. 

Of course all of the results thus far come from loop detectors. To verify the findings were 
not somehow dependent on an artifact of the loop detector data, the work repeated the analysis 
on the video-based NGSIM eb data set. The analysis uses the direct measurements of vehicle 
speed and spacing reported in the NGSIM data. Since the effective lengths from dual loop 
detectors include the size of the detection zone, 6 ft was added to the physical length recoded in 
the NGSIM data to emulate the effective vehicle length measurement from a loop detector. As 
noted in Section 1.1.2, there are many data reduction errors in the NGSIM data; however, just as 
the svp method is robust to transients in loop detector data, the method is also robust to the 
NGSIM data reduction errors.6 One of the chief limitations of the NGSIM data is simply the 
small number of vehicles observed. So unlike the loop data that used each single vehicle passage 
once and only once, given the small number of vehicles in the NGSIM data, the analysis used all 

                                                
5 As noted earlier, the curves range in increasing lengths from the top curve, 18-22 ft vehicles, to the bottom curve, 68-78 ft 
vehicles. 
6 As partial motivation for this assertion, the error mechanisms in the loop detector data and the NGSIM data are very different. If 
either or both of the error mechanisms impacted the central tendencies, then the loop detector results should differ from the 
NGSIM results. 
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vehicles with a leader, at all times and locations throughout the data set, which is reported at 10 
Hz; thereby yielding dozens to hundreds of observations of a given individual vehicle. The 
resulting Lsvp frequency distribution after including multiple observations of a given vehicle is 
shown in Table 1. Fig. 5 repeats the analysis on the NGSIM eb data set and once more, finds 
similar results. Since the raw NGSIM eb data consist of speed and spacing, in this case the 
analysis started with VXp and then projected back to the qkFR and qoccFR. Because the NGSIM 
data were collected over 45 min in almost exclusively congested conditions, there are few data 
points with speeds above 25 mph; thus, unlike Fig. 2, the curves do not exhibit a complete curve 
over the entire congested regime and instead, plateaus above 30 mph. More scatter is evident 
compared to the two loop detector data sets because the number of vehicles is smaller by three to 
four orders of magnitude. Similar to the 1997 eb data set, Fig. 5C shows that the upper end of the 
linear region falls around 20 mph in this data set. Unlike loop detectors, the NGSIM measures 
vehicles throughout space, thus, the sampling process collects many more observations at low 
speeds. So the curves for all of the length bins extend down to 1 mph, but one should keep in 
mind that this increase in the number of low speed data points comes from many repeated 
observations of a given vehicle over a short span of time and distance in space. 

3.3.	Analysis	
To quantify the relationships between length bins and across data sets, the least squares 

method was used to linearly fit spacing to speed in the VXp curves over the linear regions of the 
sCF for all three of the data sets. As noted above, the upper end of the linear region varied from 
20 to 30 mph, depending on the set and this upper limit was also used for the curve fitting.7 The 
lower end of the speed range was set to 5 mph for the loop detector data because a vehicle can 
come to a stop over a dual loop detector for an unknown amount of time and still yield a speed 
measurement up to 5 mph (Wu and Coifman, 2014), while the NGSIM range extended down to 1 
mph because the instantaneous speeds were measured directly from the video-based vehicle 
trajectories.  

The left-hand column of plots in Fig. 6 shows the fitted curves while Table 1 shows the 
resulting d and τ (as defined in Fig. 1C) and r2 from the VXp least squares linear curve fit for the 
three data sets and seven length bins over the speed ranges noted above. All cells corresponding 
to r2 below 0.95 are dimmed in Table 1, but included for completeness. Likewise, the fitted 
curves corresponding to r2 below 0.95 are shown with a lighter color in Fig. 6. Recall that the 
NGSIM data set has far fewer vehicles than the loop detector data sets; hence the r2 also tends to 
be lower, especially for the long vehicles which are less common in general. All three data sets 
show a similar trend, with both d and τ increasing with Leff.8 It makes sense that d increases with 
Leff, since much of this increase is due to the physical length of the vehicle. Likewise, in 
retrospect it seems reasonable that τ increases with Leff since the longer vehicles tend to also be 
heavier, and require greater reaction times. However, this finding of common dependency on Leff 
is contrary to conventional wisdom that d and τ are independent, e.g., as expressed in Newell 
(2002).  

The plots on the right-hand side of Fig. 6 show the VXp fitted curves projected into the 
corresponding qkFR curves. The bottom of Table 1 shows the calculated kj and w (as defined in 
Fig. 1A and Equations 7-8) for qkFR corresponding to the given d and τ. Like the microscopic 

                                                
7 Although not shown, changing the upper speed threshold by ±5 mph for any one of the data sets did not change the resulting fit 
much. 
8 Recall that Leff ≈ median(Lsvp) for the small range of lengths in a given svp length bin. 
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statistics, kj and w both depend on Leff. The trends for kj are not surprising: the longer Leff, the 
fewer identical vehicles can fit per unit distance at jam density. However, the fact that wave 
speed depends on length should prove to be an important finding. Interpreting this result, since 
there are fewer vehicles at jam density over the same distance there are fewer gaps between 
longer vehicles. With fewer gaps per unit distance the longer vehicles are less compressible than 
the shorter vehicles, and thus, signals and waves will pass upstream through longer vehicles at 
higher velocities than through shorter vehicles. 

𝑘D =
.
9
 (7) 

𝑤 = F9
G

 (8) 

Fig. 6 shows that the relationships are very stable within the given site (recall that all of 
the points are independent of one another across the length and speed bins), but vary slightly 
from one data set to the next. Revisiting the underlying data, these differences appear to be due 
at least in part to the detector settings. Across all days: 16 of the 20 dual loop detectors used in 
2000 eb had a median Lsvp of 20.0 ft while the remaining four dual loop detectors had median Lsvp 
between 20.8 and 21.2 ft; whereas three of the 4 dual loop detectors used in 1997 wb had median 
Lsvp between 19.1 and 19.6 ft, with only one lane having Lsvp of 20.0.9 As per Lee and Coifman 
(2012), at urban detector stations like these, daily median Lsvp depends on the detector sensitivity 
setting and it should be very stable over years. Moreover, if the detectors all exhibited the exact 
same sensitivity, they should also exhibit the same median Lsvp. So while the general 
relationships appear to be transferrable, e.g., the fact that w and kj depend on Leff, it is important 
to establish the detector calibration before generalizing the specific measured qkFR or VXp 
curves from one location to another. 

4.	Discussion	and	Conclusions	
Traffic flow theory is an important cornerstone to a broad range of topics, but it also has 

to overcome the inherent difficulties of studying traffic in detail given: the number of vehicles 
interacting, long distances traveled, and the fact that conditions can change dramatically over 
short distances or time periods. Conventional methods to collect and process empirical traffic 
data are insufficient and inadvertently obscure critical details. These methods typically average 
measurements over fixed time periods in a crude methodology that was originally designed to 
smooth out variability across vehicles in an era when computing power was expensive. In the 
process the conventional methods often rely on unrealistic assumptions of homogeneous vehicles 
and stationary traffic conditions. As a result there is much we still do not know about how people 
drive or the emergent flows that arise.  

Density and vehicle spacing are central to most traffic flow theories but have historically 
been difficult to measure empirically. This study extends the single vehicle passage (svp) method 
to flow-density (qkFR) and speed-spacing (VXp) relationships; thus, providing a viable method 
to measure and calibrate previously hard to measure relationships, and doing so in situ using 

                                                
9 Thus, the greater skew to shorter measured lengths in the 1997 wb data compared to the other two data sets in Table 1. In 
contrast, all eastbound lanes at stations 2 and 3 during the time period used for 2000 eb had Lsvp between 17.0 and 18.5 ft, hence, 
as discussed in Section 3.1, these two stations were excluded. 
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commonly deployed dual loop detectors.10 The loop based results were verified against NGSIM, 
demonstrating that the loop based method yields relationships similar to those from vehicle 
trajectories within the congested regime (and specifically in the sCF to region). While the 
NGSIM analysis follows the svp processing by taking many observations, sorting them into 
length and speed bins, and then finds the median spacing in each bin, because the NGSIM 
analysis uses every available observation of every vehicle whenever that vehicle has a leader, 
this sampling approach is also analogous to how one would directly measure a VXp relationship, 
e.g., Xuan and Coifman (2012). Thus reaching the same findings independent of the loop 
detector data or the necessary assumptions to project from qoccFR to VXp. In the process the 
NGSIM analysis provides independent validation of the loop detector based analysis. 

The svp method eliminates the need for (near) stationary traffic states to study the 
congested regime while also eliminating the need to fit a preconceived curve to the data. As a 
result, it is now possible to focus on understanding the factors that determine driver behavior and 
traffic flow. The analyses revealed several important findings that transcend the svp 
methodology, namely that the car following parameters d and τ depend on Leff, e.g., Table 1 
shows that longer vehicles exhibit larger response times, τ. The fact that both d and τ depend on 
Leff is contrary to conventional wisdom that d and τ are independent, e.g., as expressed in Newell 
(2002); thus, even when the true Leff is known for a given sample of inhomogeneous vehicles, 
one cannot simply apply Equation 1 to derive k from occ. It only becomes possible in this study 
because the svp process explicitly yields samples with (nearly) homogeneous vehicle lengths.  

Equations 7-8 show that both kj and w depend on Leff by way of d and τ. Thus, the shape 
of qkFR also depends on Leff. Interpreting these results, the longer Leff, the fewer identical 
vehicles can fit per unit distance at jam density. Interpreting the fact that wave speed depends on 
vehicle length: since there are fewer vehicles at jam density over the same distance there are 
fewer gaps between longer vehicles. With fewer gaps per unit distance the long vehicles are less 
compressible than shorter vehicles, and thus, signals and waves will pass upstream through long 
vehicles at higher velocities than through shorter vehicles. 

Even if one accounts for the average vehicle length when calculating k from occ via 
Equation 1 or from q and v via Equation 2, mixing inhomogeneous vehicles in a sample should 
lead to errors in the resulting k due to the dependence on the individual vehicle lengths. Fig. 6 
shows that the relationships are very stable within the given site (recall that all of the points are 
independent across length and speed bins), but vary slightly from one data set to the next due to 
the site-specific detector calibration. So while the general relationships appear to be 
transferrable, e.g., the fact that w and kj depend on Leff, it is important to establish the detector 
calibration before generalizing the specific measured qkFR or VXp curves from one location to 
another. 

Ultimately, the most important finding of this work is the fact that the velocity at which a 
given wave travels upstream through congested traffic depends on the vehicle lengths through 
which the wave passes. If waves travel faster or slower depending on the length of the vehicles 
through which the waves pass, then the way traffic is modeled should be updated to explicitly 
account for inhomogeneous vehicle lengths.  

                                                
10 While few dual loop detector stations currently report the necessary single vehicle passage data, these data exist in the 
controller prior to aggregation into fixed time samples. It is only a small modification for an operating agency to collect these svp 
data and a small minority of operating agencies already collect the svp data from their detectors. For more traditional operating 
agencies there are commercially available tools to collect the svp data in parallel with a traffic controller conventionally 
aggregating the data. 
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4.1.	Further	Points	of	Note	
While this study has shown that the qkFR and VXp curves depend on Leff, it is important 

to note that even after accounting for detector calibration the curves likely depend on many other 
factors as well, e.g., vehicle weight is likely to be an important explanatory variable determining 
the driver and vehicle response. The generally low r2 for the 38-48 ft vehicles seen across the 
data sets in Table 1 likely reflects the fact that this length range includes passenger vehicles 
pulling trailers, buses, and single unit trucks. Furthermore, for a given type of truck the vehicle 
performance likely changes depending on whether it is loaded or empty.11 The current work also 
excludes non-vehicle sources of variation in traffic flow data, such as the influence of time of 
day and the driver population (as distinct from the vehicle population). To fully assess these 
other factors, data from many more sites are required. Regardless, if other explanatory variables 
are measured or otherwise become available, the svp method could be extended to account for 
them via additional dimensions in the sampling bins, see, e.g., Ponnu and Coifman (2015, 2017) 

Although this work focused strictly on freeway traffic, the fact that the length 
dependencies are found on the freeway suggests that there is a good chance that a similar 
relationship exists in the interrupted flow on arterials, but investigating such a relationship on 
arterials is a topic left to future research. 
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Appendix	

Motivation	for	the	svp	Method	
Stationary traffic requires q, k and v to be constant from one sample to the next. Yet it is 

very rare to find q or v constant over time during congested periods on a freeway. As a result, 
many researchers believe that LWR and other hydrodynamic models do not require stationary 
traffic conditions, e.g., as noted in Daganzo (1997), "The LWR model arises from the 
assumption that the stationary relationships... also apply when traffic is not stationary." In this 
context, if the relationships apply when traffic is non-stationary, then it should also be possible to 
measure these relationships when traffic is non-stationary, e.g., as Coifman and Wang (2005) did 
to measure wave speeds between detector stations or in the case of the current work, seeking the 
central tendency of the svp data. As empirical evidence to support this view that LWR does not 
require stationary conditions, Coifman (2002) began with the premise that the constantly 
varying, non-stationary evolution of congested traffic could be approximated with a piecewise 
linear evolution (similar to how a Fresnel lens approximates a conventional lens in optics). Each 
vehicle passage at a dual loop detector station captures the average state, represented by the 
constant measured speed during the measured headway. This average state is assumed to 
propagate upstream at a constant velocity. Then applying LWR to individual vehicle passage 
data at real detector stations that work integrated across the resulting bands to accurately estimate 
vehicle trajectories over space, strictly using local conditions observed over time at the given 
loop detector station. There was no assumption of equilibrium or stationary traffic yet the results 
held over a wide range of congested traffic conditions, even when speeds changed dramatically 
from one vehicle to the next, i.e., during non-stationary conditions. 
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Table 1, Distribution of vehicle lengths in each data set; VXp least squares linear curve fit to svp based 
loop detector data or spacing based NGSIM data and the associated coefficient of 
determination; and finally, the calculated qkFR statistics derived from the VXp fit. All entries 
associated with r2 less than 0.95 are shown in gray. 

 
    18-22 ft 22-28 ft 28-38 ft 38-48 ft 48-58 ft 58-68 ft 68-78 ft 
distrib. 2000 eb 82.8% 11.9% 1.32% 0.73% 0.49% 1.65% 1.19% 
of veh 1997 wb 88.1% 7.0% 1.03% 0.68% 0.63% 1.78% 0.75% 
lengths NGSIM eb 80.9% 15.6% 0.86% 0.54% 0.27% 1.07% 0.75% 
d 2000 eb 25.8 33.4 45.3 45.1 64.2 74.6 84.1 
(ft) 1997 wb 24.0 31.2 45.1 52.2 59.7 78.3 93.2 
  NGSIM eb 26.9 31.0 45.4 54.6 77.7 87.0 98.4 
τ 2000 eb 1.18 1.37 1.77 2.06 1.92 1.89 2.20 
(s) 1997 wb 1.49 1.80 1.94 2.15 2.52 2.32 2.37 
  NGSIM eb 1.26 1.36 1.58 2.54 1.50 2.11 2.18 
r2 2000 eb 0.999 0.997 0.942 0.914 0.812 0.951 0.974 

 
1997 wb 1.000 0.996 0.968 0.901 0.975 0.986 0.872 

  NGSIM eb 0.998 0.996 0.957 0.914 0.675 0.896 0.928 
kj 2000 eb 205.0 158.1 116.5 117.0 82.2 70.8 62.8 
(veh/mi) 1997 wb 219.9 169.1 117.1 101.1 88.4 67.5 56.6 
  NGSIM eb 196.5 170.2 116.4 96.7 68.0 60.7 53.6 
w 2000 eb -14.9 -16.6 -17.4 -15.0 -22.8 -26.9 -26.1 
(mph) 1997 wb -11.0 -11.8 -15.8 -16.5 -16.2 -23.0 -26.9 
  NGSIM eb -14.5 -15.6 -19.6 -14.7 -35.3 -28.1 -30.7 
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Figure 1, (A) Hypothetical example of an ideal triangular qkFR curve denoting the key parameters, (B) a 

plot of actual q versus occ from 30 sec samples at one detector on one day, (C) a hypothetical 
example of an ideal linear VXp curve denoting the key parameters. Typically the exact shape of 
the qkFR and VXp have been subject to the judgment of the researcher due to the scatter in 
real empirical data, as such, the curves in parts A and C are showing one possible shape. 
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Figure 2, (A) An example of an empirical qoccFR from the svp method applied to actual dual loop 

detector data from the 2000 eb data set, (B) the corresponding qkFR after deriving k from occ 
and L, (C) detail of the corresponding VXp after converting k to average spacing. In each plot 
there is one curve for each length bin. In plots A and B the vehicle length bins increase from top 
to bottom and in plot C the vehicle length bins increase from left to right. Since there is no 
smoothing across the different speed bins, all of the points are independent and the resulting 
curves do not depend on any a priori assumptions of shape. Since there are fewer long 
vehicles, those curves show more scatter than the shorter vehicles. 
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Figure 3, Hypothetical VXp curves for three vehicles, all the same length, with slightly different vf, d, and 

𝜏. Below some speed all vehicles are sCF, and above some spacing all vehicles are uiFF. In 
between the traffic is mixed. Within the sCF region, taking the median spacing at a given v 
across a large number of vehicles should yield the center of the spacing distribution. 
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Figure 4, Repeating the analysis from Fig. 2, except now applied to the 1997 wb data set. The curves 

corresponding to the long vehicles show more scatter than Fig. 2 because the number of svp 
observations is an order of magnitude smaller than the 2000 eb data set. 
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Figure 5, Repeating the analysis from Fig. 2, except now applied to the NGSIM eb data set. Since these 

raw data are explicitly comprised of speed and spacing, unlike the loop detector data, VXp is 
found first and then projected to qkFR and qoccFR. These curves do not show a complete 
curve over all speeds, because unlike the two loop detector data sets, NGSIM eb does not see 
speeds throughout the entire congested regime. More scatter is evident compared to the two 
loop detector data sets because the number of vehicles is smaller by three to four orders of 
magnitude. 
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Figure 6, The left column of plots show the VXp least squares linear curve fit to the svp based loop 

detector data or spacing based NGSIM data by length bin for each of the three data sets. The 
right column of plots projects the given VXp curve fit to the qkFR. The top row is from 2000 eb, 
middle row from 1997 wb, and bottom row from NGSIM eb. Throughout this figure the raw data 
are shown with points and fitted curves with lines. The fitted curves are plotted in a light shade 
whenever the coefficient of determination is less than 0.95. The relationships between length 
bins remains unchanged from Fig. 2. 
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